首页> 外文OA文献 >Nano-scratch testing of (Ti,Fe)Nx thin films on silicon
【2h】

Nano-scratch testing of (Ti,Fe)Nx thin films on silicon

机译:硅上(Ti,Fe)Nx薄膜的纳米划痕测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thin films of (Ti,Fe)Nx have been produced on silicon wafers with a wide range of compositions and mechanical properties to investigate correlations between the mechanical properties measured by indentation and crack resistance in the highly loaded sliding contact in a nano-scratch test. The nano-scratch test data on the thin films using a well-worn Berkovich indenter with ~1 m end radius were supported by high resolution scanning electron microscopic (SEM) imaging and analytical stress modelling. The results show that mechanical properties of the coating, its thickness and the substrate properties all influence the deformation process. They affect the critical loads required, the type of failures observed and their location relative to the moving probe. The differences in coating mechanical properties affect how the interface is weakened (i.e. by initial substrate or coating yielding or both) and determine the deformation failure mechanism. The load dependence of the friction coefficient provides details of the sliding contact zone and the location of failure relative to the sliding probe. Improved performance was achieved at intermediate hardness and H3/E2 in the nano-scratch tests on thin films. The friction and modelling results strongly suggest that failure at low load on the hardest coatings is due to a combination of high tensile stress at the rear of the contact zone and substrate yield. Designing thin films for protective coatings with in-built dissipative structures (such as soft and low elastic modulus inclusions) and mechanisms to combat stress may be a more successful route to optimise their toughness in highly loaded sliding conditions than aiming to minimise plasticity by increasing their hardness.
机译:(Ti,Fe)Nx薄膜已经在具有广泛组成和机械性能的硅晶片上生产,以研究在纳米刮擦测试中通过压痕测得的机械性能与高负荷滑动接触中的抗裂性之间的相关性。高分辨率扫描电子显微镜(SEM)成像和分析应力模型支持使用磨损过的Berkovich压头在末端半径约为1 µm的薄膜上进行的纳米划痕测试数据。结果表明,涂​​层的机械性能,其厚度和基材性能均影响变形过程。它们会影响所需的关键负载,观察到的故障类型以及它们相对于移动探针的位置。涂层机械性能的差异会影响界面的弱化方式(即通过初始基材或涂层屈服或两者兼有),并确定变形破坏机理。摩擦系数的负载依赖性提供了滑动接触区域的细节以及相对于滑动探针的故障位置。在薄膜的纳米划痕测试中,在中等硬度和H3 / E2的条件下,性能得到了改善。摩擦和模型结果强烈表明,最硬涂层在低负荷下的失效是由于接触区后部的高拉伸应力和基材屈服的综合作用。设计具有内置耗散结构(例如柔软和低弹性模量的夹杂物)和抗应力机制的保护膜的薄膜,可能比通过增加其可塑性来最大程度地减少其可塑性,是一种在高负载滑动条件下优化其韧性的更成功的途径。硬度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号